Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Nat Commun ; 15(1): 3035, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600088

People living with HIV (PLWH) experience increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors associated with this vulnerability remain uncertain. In the general population, alterations in the N-glycans on IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG N-glycans in cross-sectional and longitudinal samples from 1214 women and men, living with and without HIV. PLWH exhibit an accelerated accumulation of pro-aging-associated glycan alterations and heightened expression of senescence-associated glycan-degrading enzymes compared to controls. These alterations correlate with elevated markers of inflammation and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit a reduced ability to elicit anti-HIV Fc-mediated immune activities. These findings hold potential for the development of biomarkers and tools to identify and prevent premature aging and comorbidities in PLWH.


Aging, Premature , HIV Infections , Male , Humans , Female , Immunoglobulin G , Cross-Sectional Studies , Aging , Inflammation/complications , Polysaccharides
2.
Immunity ; 57(4): 912-925.e4, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38490198

The spike glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to accumulate substitutions, leading to breakthrough infections of vaccinated individuals. It remains unclear if exposures to antigenically distant SARS-CoV-2 variants can overcome memory B cell biases established by initial SARS-CoV-2 encounters. We determined the specificity and functionality of antibody and B cell responses following exposure to BA.5 and XBB variants in individuals who received ancestral SARS-CoV-2 mRNA vaccines. BA.5 exposures elicited antibody responses that targeted epitopes conserved between the BA.5 and ancestral spike. XBB exposures also elicited antibody responses that primarily targeted epitopes conserved between the XBB.1.5 and ancestral spike. However, unlike BA.5, a single XBB exposure elicited low frequencies of XBB.1.5-specific antibodies and B cells in some individuals. Pre-existing cross-reactive B cells and antibodies were correlated with stronger overall responses to XBB but weaker XBB-specific responses, suggesting that baseline immunity influences the activation of variant-specific SARS-CoV-2 responses.


COVID-19 , SARS-CoV-2 , Humans , Antibody Formation , Antibodies , Epitopes , Antibodies, Neutralizing , Antibodies, Viral
3.
medRxiv ; 2024 Jan 09.
Article En | MEDLINE | ID: mdl-38260304

The spike glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to accumulate substitutions, leading to breakthrough infections of vaccinated individuals and prompting the development of updated booster vaccines. Here, we determined the specificity and functionality of antibody and B cell responses following exposure to BA.5 and XBB variants in individuals who received ancestral SARS-CoV-2 mRNA vaccines. BA.5 exposures elicited antibody responses that primarily targeted epitopes conserved between the BA.5 and ancestral spike, with poor reactivity to the XBB.1.5 variant. XBB exposures also elicited antibody responses that targeted epitopes conserved between the XBB.1.5 and ancestral spike. However, unlike BA.5, a single XBB exposure elicited low levels of XBB.1.5-specific antibodies and B cells in some individuals. Pre-existing cross-reactive B cells and antibodies were correlated with stronger overall responses to XBB but weaker XBB-specific responses, suggesting that baseline immunity influences the activation of variant-specific SARS-CoV-2 responses.

4.
NPJ Vaccines ; 8(1): 183, 2023 Nov 24.
Article En | MEDLINE | ID: mdl-38001122

An effective HIV-1 vaccine remains a critical unmet need for ending the AIDS epidemic. Vaccine trials conducted to date have suggested the need to increase the durability and functionality of vaccine-elicited antibodies to improve efficacy. We hypothesized that a conjugate vaccine based on the learned response to immunization with hepatitis B virus could be utilized to expand T cell help and improve antibody production against HIV-1. To test this, we developed an innovative conjugate vaccine regimen that used a modified vaccinia virus Ankara (MVA) co-expressing HIV-1 envelope (Env) and the hepatitis B virus surface antigen (HBsAg) as a prime, followed by two Env-HBsAg conjugate protein boosts. We compared the immunogenicity of this conjugate regimen to matched HIV-1 Env-only vaccines in two groups of 5 juvenile rhesus macaques previously immunized with hepatitis B vaccines in infancy. We found expansion of both HIV-1 and HBsAg-specific circulating T follicular helper cells and elevated serum levels of CXCL13, a marker for germinal center activity, after boosting with HBsAg-Env conjugate antigens in comparison to Env alone. The conjugate vaccine elicited higher levels of antibodies binding to select HIV Env antigens, but we did not observe significant improvement in antibody functionality, durability, maturation, or B cell clonal expansion. These data suggests that conjugate vaccination can engage both HIV-1 Env and HBsAg specific T cell help and modify antibody responses at early time points, but more research is needed to understand how to leverage this strategy to improve the durability and efficacy of next-generation HIV vaccines.

5.
bioRxiv ; 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37609144

People with HIV (PWH) experience an increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors that contribute to or are associated with this vulnerability remain uncertain. In the general population, alterations in the glycomes of circulating IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG glycomes of cross-sectional and longitudinal samples from 1,216 women and men, both living with virally suppressed HIV and those without HIV. Our glycan-based machine learning models indicate that living with chronic HIV significantly accelerates the accumulation of pro-aging-associated glycomic alterations. Consistently, PWH exhibit heightened expression of senescence-associated glycan-degrading enzymes compared to their controls. These glycomic alterations correlate with elevated markers of inflammatory aging and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit reduced anti-HIV IgG-mediated innate immune functions. These findings hold significant potential for the development of glycomic-based biomarkers and tools to identify and prevent premature aging and comorbidities in people living with chronic viral infections.

6.
Proc Natl Acad Sci U S A ; 120(35): e2216521120, 2023 08 29.
Article En | MEDLINE | ID: mdl-37603748

The constant domains of antibodies are important for effector functions, but less is known about how they can affect binding and neutralization of viruses. Here, we evaluated a panel of human influenza virus monoclonal antibodies (mAbs) expressed as IgG1, IgG2, or IgG3. We found that many influenza virus-specific mAbs have altered binding and neutralization capacity depending on the IgG subclass encoded and that these differences result from unique bivalency capacities of the subclasses. Importantly, subclass differences in antibody binding and neutralization were greatest when the affinity for the target antigen was reduced through antigenic mismatch. We found that antibodies expressed as IgG3 bound and neutralized antigenically drifted influenza viruses more effectively. We obtained similar results using a panel of SARS-CoV-2-specific mAbs and the antigenically advanced B.1.351 and BA.1 strains of SARS-CoV-2. We found that a licensed therapeutic mAb retained neutralization breadth against SARS-CoV-2 variants when expressed as IgG3, but not IgG1. These data highlight that IgG subclasses are not only important for fine-tuning effector functionality but also for binding and neutralization of antigenically drifted viruses.


Antibodies, Viral , COVID-19 , Immunoglobulin G , Influenza, Human , Immunoglobulin G/immunology , Antibodies, Viral/immunology , Immunoglobulin Fab Fragments/immunology , Antibody Formation , Influenza, Human/immunology , Influenza, Human/virology , COVID-19/immunology , COVID-19/virology , Immunoglobulin Class Switching , SARS-CoV-2/physiology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Humans , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/physiology
7.
bioRxiv ; 2022 Sep 28.
Article En | MEDLINE | ID: mdl-36203556

The constant domains of antibodies are important for effector functions, but less is known about how they can affect binding and neutralization of viruses. Here we evaluated a panel of human influenza virus monoclonal antibodies (mAbs) expressed as IgG1, IgG2 or IgG3. We found that many influenza virus-specific mAbs have altered binding and neutralization capacity depending on the IgG subclass encoded, and that these differences result from unique bivalency capacities of the subclasses. Importantly, subclass differences in antibody binding and neutralization were greatest when the affinity for the target antigen was reduced through antigenic mismatch. We found that antibodies expressed as IgG3 bound and neutralized antigenically drifted influenza viruses more effectively. We obtained similar results using a panel of SARS-CoV-2-specific mAbs and the antigenically advanced B.1.351 strain of SARS-CoV-2. We found that a licensed therapeutic mAb retained neutralization breadth against SARS-CoV-2 variants when expressed as IgG3, but not IgG1. These data highlight that IgG subclasses are not only important for fine-tuning effector functionality, but also for binding and neutralization of antigenically drifted viruses. Significance: Influenza viruses and coronaviruses undergo continuous change, successfully evading human antibodies elicited from prior infections or vaccinations. It is important to identify features that allow antibodies to bind with increased breadth. Here we examined the effect that different IgG subclasses have on monoclonal antibody binding and neutralization. We show that IgG subclass is a determinant of antibody breadth, with IgG3 affording increased neutralization of antigenically drifted variants of influenza virus and SARS-CoV-2. Future studies should evaluate IgG3 therapeutic antibodies and vaccination strategies or adjuvants that may skew antibody responses toward broadly reactive isotypes.

8.
Cell Rep ; 41(3): 111496, 2022 10 18.
Article En | MEDLINE | ID: mdl-36261003

It is important to determine if severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and SARS-CoV-2 mRNA vaccinations elicit different types of antibodies. Here, we characterize the magnitude and specificity of SARS-CoV-2 spike-reactive antibodies from 10 acutely infected health care workers with no prior SARS-CoV-2 exposure history and 23 participants who received SARS-CoV-2 mRNA vaccines. We found that infection and primary mRNA vaccination elicit S1- and S2-reactive antibodies, while secondary vaccination boosts mostly S1 antibodies. Using absorption assays, we found that SARS-CoV-2 infections elicit a large proportion of original antigenic sin-like antibodies that bind efficiently to the spike of common seasonal human coronaviruses but poorly to the spike of SARS-CoV-2. In converse, vaccination modestly boosts antibodies reactive to the spike of common seasonal human coronaviruses, and these antibodies cross-react more efficiently to the spike of SARS-CoV-2. Our data indicate that SARS-CoV-2 infections and mRNA vaccinations elicit fundamentally different antibody responses.


COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral , Vaccination , RNA, Messenger/genetics
9.
Sci Adv ; 8(38): eabq0273, 2022 09 23.
Article En | MEDLINE | ID: mdl-36149967

To develop vaccines for certain key global pathogens such as HIV, it is crucial to elicit both neutralizing and non-neutralizing Fc-mediated effector antibody functions. Clinical evidence indicates that non-neutralizing antibody functions including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) contribute to protection against several pathogens. In this study, we demonstrated that conjugation of HIV Envelope (Env) antigen gp120 to a self-assembling nanofiber material named Q11 induced antibodies with higher breadth and functionality when compared to soluble gp120. Immunization with Q11-conjugated gp120 vaccine (gp120-Q11) demonstrated higher tier 1 neutralization, ADCP, and ADCC as compared to soluble gp120. Moreover, Q11 conjugation altered the Fc N-glycosylation profile of antigen-specific antibodies, leading to a phenotype associated with increased ADCC in animals immunized with gp120-Q11. Thus, this nanomaterial vaccine strategy can enhance non-neutralizing antibody functions possibly through modulation of immunoglobulin G Fc N-glycosylation.


AIDS Vaccines , HIV Infections , HIV-1 , Nanofibers , Animals , Glycosylation , HIV Antibodies , HIV Infections/prevention & control , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G , Vaccines, Subunit
10.
Vaccine ; 40(33): 4764-4771, 2022 08 05.
Article En | MEDLINE | ID: mdl-35773120

BACKGROUND: Streptococcus pneumoniae is a leading cause of severe infections among children. Despite vaccination, HIV-exposed, uninfected (HEU) children have a higher incidence of invasive pneumococcal disease than HIV-unexposed, uninfected (HUU) children. We sought to compare the immunogenicity of 13-valent pneumococcal conjugate vaccine (PCV-13) in HEU and HUU infants. METHODS: We conducted a prospective cohort study of 134 mother-infant dyads in Botswana. Infants received PCV-13 doses at 2, 3, and 4 months through routine clinical care. We measured IgG antibodies specific to vaccine serotypes in sera collected from infants at 0, 5, and 12 months of age. We calculated the proportion of infants with protective IgG levels (≥0.35 µg/mL) to specific pneumococcal serotypes. RESULTS: At birth, fewer than half of infants had protective IgG levels to serotypes 1 (38%), 3 (46%), 4 (33%), 5 (23%), 6B (40%), 7F (44%), 9 V (44%), and 23F (46%). Compared to HUU infants (n = 97), HEU infants (n = 37) had lower antibody concentrations at birth to serotypes 5 (p = 0.046) and 19A (p = 0.008) after adjustment for maternal age and infant birth weight. More than 80% of HEU and HUU infants developed protective antibody levels to each of the 13 vaccine serotypes following PCV-13 vaccination. Median concentrations of antibodies to pneumococcal serotypes declined by 55-93% between 5 and 12 months of age, with fewer than half of infants having protective antibody levels to serotypes 1 (47%), 3 (28%), 9 V (44%), 18C (24%), and 23F (49%) at 12 months of age. CONCLUSIONS: Both HEU and HUU infants developed protective antibody responses to PCV-13 administered in a 3 + 0 schedule. However, antibody concentrations to many pneumococcal serotypes waned substantially by 12 months of age, suggesting that a PCV-13 booster dose in the second year of life may be needed to maintain protective pneumococcal antibody levels in older infants and young children.


HIV Infections , Pneumococcal Infections , Aged , Antibodies, Bacterial , Botswana/epidemiology , Child , Child, Preschool , Humans , Immunoglobulin G , Infant , Infant, Newborn , Kinetics , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines , Prospective Studies , Vaccines, Conjugate
11.
Clin Infect Dis ; 74(7): 1131-1140, 2022 04 09.
Article En | MEDLINE | ID: mdl-34260701

BACKGROUND: Placentally transferred maternal immunoglobulin G (IgG) protects against pathogens in early life, yet vertically transmitted infections can interfere with transplacental IgG transfer. Although human cytomegalovirus (HCMV) is the most common placentally-transmitted viral infection worldwide, the impact of congenital HCMV (cCMV) infection on transplacental IgG transfer has been underexplored. METHODS: We evaluated total and antigen-specific maternal and cord blood IgG levels and transplacental IgG transfer efficiency in a US-based cohort of 93 mother-infant pairs including 27 cCMV-infected and 66 cCMV-uninfected pairs, of which 29 infants were born to HCMV-seropositive nontransmitting mothers and 37 to HCMV-seronegative mothers. Controls were matched on sex, race/ethnicity, maternal age, and delivery year. RESULTS: Transplacental IgG transfer efficiency was decreased by 23% (95% confidence interval [CI] 10-36%, P = .0079) in cCMV-infected pairs and 75% of this effect (95% CI 28-174%, P = .0085) was mediated by elevated maternal IgG levels (ie, hypergammaglobulinemia) in HCMV-transmitting women. Despite reduced transfer efficiency, IgG levels were similar in cord blood from infants with and without cCMV infection. CONCLUSIONS: Our results indicate that cCMV infection moderately reduces transplacental IgG transfer efficiency due to maternal hypergammaglobulinemia; however, infants with and without cCMV infection had similar antigen-specific IgG levels, suggesting comparable protection from maternal IgG acquired via transplacental transfer.


Cytomegalovirus Infections , Pregnancy Complications, Infectious , Antibodies, Viral , Cytomegalovirus , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/congenital , Female , Humans , Hypergammaglobulinemia , Immunoglobulin G , Infant , Pregnancy
12.
J Infect Dis ; 225(10): 1731-1740, 2022 05 16.
Article En | MEDLINE | ID: mdl-34962990

BACKGROUND: Recent studies have indicated that broadly neutralizing antibodies (bnAbs) in children may develop earlier after human immunodeficiency virus (HIV) infection compared to adults. METHODS: We evaluated plasma from 212 antiretroviral therapy-naive children with HIV (1-3 years old). Neutralization breadth and potency was assessed using a panel of 10 viruses and compared to adults with chronic HIV. The magnitude, epitope specificity, and immunoglobulin (Ig)G subclass distribution of Env-specific antibodies were assessed using a binding antibody multiplex assay. RESULTS: One-year-old children demonstrated neutralization breadth comparable to chronically infected adults, whereas 2- and 3-year-olds exhibited significantly greater neutralization breadth (P = .014). Likewise, binding antibody responses increased with age, with levels in 2- and 3-year-old children comparable to adults. Overall, there was no significant difference in antibody specificities or IgG subclass distribution between the pediatric and adult cohorts. It is interesting to note that the neutralization activity was mapped to a single epitope (CD4 binding site, V2 or V3 glycans) in only 5 of 38 pediatric broadly neutralizing samples, which suggests that most children may develop a polyclonal neutralization response. CONCLUSIONS: These results contribute to a growing body of evidence suggesting that initiating HIV immunization early in life may present advantages for the development of broadly neutralizing antibody responses.


HIV Infections , HIV-1 , Adult , Antibodies, Neutralizing , Broadly Neutralizing Antibodies , Child , Child, Preschool , Epitopes , HIV Antibodies , Humans , Immunoglobulin G , Infant
13.
PLoS One ; 16(12): e0256885, 2021.
Article En | MEDLINE | ID: mdl-34972105

Different HIV vaccine regimens elicit distinct plasma antibody responses in both human and nonhuman primate models. Previous studies in human and non-human primate infants showed that adjuvants influenced the quality of plasma antibody responses induced by pediatric HIV envelope vaccine regimens. We recently reported that use of the 3M052-SE adjuvant and longer intervals between vaccinations are associated with higher magnitude of antibody responses in infant rhesus macaques. However, the impact of different adjuvants in HIV vaccine regimens on the developing infant B cell receptor (BCR) repertoire has not been studied. This study evaluated whether pediatric HIV envelope vaccine regimens with different adjuvants induced distinct antigen-specific memory B cell repertoires and whether specific immunoglobulin (Ig) immunogenetic characteristics are associated with higher magnitude of plasma antibody responses in vaccinated infant rhesus macaques. We utilized archived preclinical pediatric HIV vaccine studies PBMCs and tissue samples from 19 infant rhesus macaques immunized either with (i) HIV Env protein with a squalene adjuvant, (ii) MVA-HIV and Env protein co-administered using a 3-week interval, (iii) MVA-HIV prime/ protein boost with an extended 6-week interval between immunizations, or (iv) with HIV Env administered with 3M-052-SE adjuvant. Frequencies of vaccine-elicited HIV Env-specific memory B cells from PBMCs and tissues were similar across vaccination groups (frequency range of 0.06-1.72%). There was no association between vaccine-elicited antigen-specific memory B cell frequencies and plasma antibody titer or avidity. Moreover, the epitope specificity and Ig immunogenetic features of vaccine-elicited monoclonal antibodies did not differ between the different vaccine regimens. These data suggest that pediatric HIV envelope vaccine candidates with different adjuvants that previously induced higher magnitude and quality of plasma antibody responses in infant rhesus macaques were not driven by distinct antigen-specific memory BCR repertoires.


AIDS Vaccines/blood , AIDS Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Antibody Formation/immunology , Receptors, Antigen, B-Cell/metabolism , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibody Formation/drug effects , Child , Complementarity Determining Regions , Epitopes/immunology , Humans , Immunization , Immunoglobulin Heavy Chains/metabolism , Immunologic Memory/drug effects , Macaca mulatta , Somatic Hypermutation, Immunoglobulin , Toll-Like Receptors/agonists , Toll-Like Receptors/metabolism
15.
Vaccine ; 38(31): 4869-4876, 2020 06 26.
Article En | MEDLINE | ID: mdl-32482459

Administration of vaccines during pregnancy provides maternal protection against infectious diseases. This protection is extended to their infants during the first months of life, as pathogen-specific antibodies formed in response to maternal vaccination are transferred across the placenta to the fetus. Notably, Tdap (tetanus-diphtheria-acellular pertussis) vaccination booster is routinely administered to pregnant women both to prevent neonatal tetanus and to ensure that infants have protective levels of pertussis antibodies until they are able to establish their own vaccine-induced levels. Whether infant protection through maternal immunization is merely due to an increase in maternal antibody levels or whether maternal immunization enhances the transfer of vaccine-specific antibodies is unclear. Moreover, the potential impact of prenatal vaccinations on the transplacental transfer of other antibodies, such as antibodies raised as a result of infections or other vaccines administered prior to pregnancy, has not been studied. The goal of this study was to define the impact of maternal vaccination on IgG transplacental transfer efficiency. We analyzed antigen-specific antibody populations and IgG subclass distribution in maternal and cord blood samples from 58 mother-infant pairs. All women received the seasonal inactivated influenza vaccine during pregnancy and 25 women received the Tdap vaccine during the second or third trimester of gestation. Prenatal Tdap vaccination did not impact the efficiency of IgG transplacental transfer; however, it was associated with higher maternal and infant vaccine-elicited Tdap-specific antibody levels, and with a higher proportion of infants with protective levels of antibodies, especially against diphtheria. There was also no difference in the IgG transplacental transfer rate of antibodies against non-Tdap vaccines between the two groups of women. Our results confirm previous reports demonstrating the benefits of prenatal Tdap immunization and indicate that this strategy does not impede the transplacental transfer of other antibodies that are also important for infant protection.


Diphtheria-Tetanus-acellular Pertussis Vaccines , Diphtheria , Whooping Cough , Antibodies, Bacterial , Diphtheria-Tetanus Vaccine , Female , Humans , Infant , Pregnancy , Vaccination
16.
Cell ; 178(1): 190-201.e11, 2019 06 27.
Article En | MEDLINE | ID: mdl-31204101

The placental transfer of maternal IgG is critical for infant protection against infectious pathogens. However, factors that modulate the placental transfer of IgG remain largely undefined. HIV-infected women have impaired placental IgG transfer, presenting a unique "disruption model" to define factors that modulate placental IgG transfer. We measured the placental transfer efficiency of maternal HIV and pathogen-specific IgG in US and Malawian HIV-infected mothers and their HIV-exposed uninfected and infected infants. We examined the role of maternal HIV disease progression, infant factors, placental Fc receptor expression, IgG subclass, and glycan signatures and their association with placental IgG transfer efficiency. Maternal IgG characteristics, such as binding to placentally expressed Fc receptors FcγRIIa and FcγRIIIa, and Fc region glycan profiles were associated with placental IgG transfer efficiency. Our findings suggest that Fc region characteristics modulate the selective placental transfer of IgG, with implications for maternal vaccine design and infant health.


HIV Infections/transmission , HIV/genetics , Immunoglobulin G/blood , Infectious Disease Transmission, Vertical , Placenta/metabolism , Pregnancy Complications, Infectious/virology , Receptors, IgG/metabolism , Cohort Studies , Disease Progression , Female , Glycosylation , HIV Infections/immunology , HIV Infections/virology , Humans , Immunoglobulin Fc Fragments/metabolism , Infant , Infant, Newborn , Malawi , Pregnancy , Pregnancy Complications, Infectious/immunology , United States , Viral Load/genetics
17.
J Infect Dis ; 220(5): 772-780, 2019 07 31.
Article En | MEDLINE | ID: mdl-31107951

BACKGROUND: Development of a cytomegalovirus (CMV) vaccine is a high priority. However, the ability of antibodies to protect against CMV infection is not well characterized. Studies of maternal antibodies in infants offer the potential to identify humoral correlates of protection against postnatal acquisition. METHODS: This hypothesis-generating study analyzed 29 Ugandan mother-infant pairs that were followed weekly for CMV acquisition. Seventeen mothers and no infants were infected with human immunodeficiency virus (HIV). We evaluated the association between CMV-specific immunoglobulin G (IgG) responses in mothers at the time of delivery and their infants' CMV status at 6 months of age. We also assessed levels of CMV-specific IgG in infants at 6 weeks of age. CMV-specific IgG responses in the mother-infant pairs were then analyzed on the basis of perinatal HIV exposure. RESULTS: We found similar levels of multiple CMV glycoprotein-specific IgG binding specificities and functions in mothers and infants, irrespective of perinatal HIV exposure or infant CMV status at 6 months of age. However, the glycoprotein B-specific IgG titer, measured by 2 distinct assays, was higher in infants without CMV infection and was moderately associated with delayed CMV acquisition. CONCLUSIONS: These data suggest that high levels of glycoprotein B-specific IgG may contribute to the partial protection against postnatal CMV infection afforded by maternal antibodies, and they support the continued inclusion of glycoprotein B antigens in CMV vaccine candidates.


Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/prevention & control , Cytomegalovirus Vaccines/immunology , Cytomegalovirus/immunology , Immunity, Humoral , Infectious Disease Transmission, Vertical/prevention & control , Antibodies, Viral/immunology , Antibody Formation , HIV Infections/complications , Humans , Immunoglobulin G/immunology , Immunoglobulins, Intravenous , Infant , Mothers , Uganda , Viral Envelope Proteins/immunology
18.
J Virol ; 93(10)2019 05 15.
Article En | MEDLINE | ID: mdl-30842326

Studies in animal models are essential prerequisites for clinical trials of candidate HIV vaccines. Small animals, such as rabbits, are used to evaluate promising strategies prior to further immunogenicity and efficacy testing in nonhuman primates. Our goal was to determine how HIV-specific vaccine-elicited antibody responses, epitope specificity, and Fc-mediated functions in the rabbit model can predict those in the rhesus macaque (RM) model. Detailed comparisons of the HIV-1-specific IgG response were performed on serum from rabbits and RM given identical modified vaccinia virus Ankara-prime/gp120-boost immunization regimens. We found that vaccine-induced neutralizing antibody, gp120-binding antibody levels and immunodominant specificities, antibody-dependent cellular phagocytosis of HIV-1 virions, and antibody-dependent cellular cytotoxicity (ADCC) responses against gp120-coated target cells were similar in rabbits and RM. However, we also identified characteristics of humoral immunity that differed across species. ADCC against HIV-infected target cells was elicited in rabbits but not in RM, and we observed differences among subdominantly targeted epitopes. Human Fc receptor binding assays and analysis of antibody-cell interactions indicated that rabbit vaccine-induced antibodies effectively recruited and activated human natural killer cells, while vaccine-elicited RM antibodies were unable to activate either human or RM NK cells. Thus, our data demonstrate that both Fc-independent and Fc-dependent functions of rabbit antibodies can be measured with commonly used in vitro assays; however, the ability of immunogenicity studies performed in rabbits to predict responses in RM will vary depending on the particular immune parameter of interest.IMPORTANCE Nonneutralizing antibody functions have been associated with reduced infection risk, or control of virus replication, for HIV-1 and related viruses. It is therefore critical to evaluate development of these responses throughout all stages of preclinical testing. Rabbits are conventionally used to evaluate the ability of vaccine candidates to safely elicit antibodies that bind and neutralize HIV-1. However, it remained unexplored how effectively rabbits model the development of nonneutralizing antibody responses in primates. We administered identical HIV-1 vaccine regimens to rabbits and rhesus macaques and performed detailed comparisons of vaccine-induced antibody responses. We demonstrated that nonneutralizing HIV-specific antibody responses can be studied in the rabbit model and have identified aspects of these responses that are common, and those that are unique, to rabbits and rhesus macaques. Our findings will help determine how to best utilize preclinical rabbit and rhesus macaque models to accelerate HIV vaccine candidate testing in human trials.


AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV-1/immunology , Animals , Antibodies, Neutralizing/metabolism , Antibody Formation , B-Lymphocyte Subsets/metabolism , Disease Models, Animal , Epitopes , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Infections/virology , HIV Seropositivity , Humans , Macaca mulatta , Rabbits , Species Specificity
...